NIST Evaluation of Latent Fingerprint Algorithms (A proposal)

Michael Garris, Vladimir Dvornychenko, & Austin Hicklin

Current Applications (Front End)

1. Latent Image Search

- Originating agency submits a latent image
- Features are encoded automatically by machine
- Machine Encoding

2. Latent Feature Search

- Originating agency submits latent features encoded by a fingerprint examiner
- Human Encoding

Current Applications (Back End)

1. Latent Search of Tenprints

 Match latent to a background of tenprints

(E.g. Crime scene identification)

2. Tenprint Search of Latents

 Match tenprint to a background of latents

(E.g. Searching the Unsolved Latent File)

3. Latent Search of Latents

Simple Objectives

Front End

- How good is machine encoding?
- Benefits of machine encoding?

Back End

- How good is automated match determination?
- Benefits of automated match determination?

What we have to work with

Latents

- Images
- Feature set
 - Human encoded
 - Machine encoded

Tenprints (Mates & Non-Mates)

- Images
- Feature set
 - Machine encoded

SDK Testing (Subroutine and API for the following)

1. Encoder

- IN: Latent or Tenprint image
- OUT: Feature Template

2. Matcher

- IN: 2 Feature Templates
- OUT: Similarity Score

3. Score Normalization

- IN: Vector of Scores
 (all scores for latent against gallery of tenprints)
- OUT: Normalized Vector of Scores

Front End Scenario 1

Human Latent Encoding

Front End Scenario 2

Machine Latent Encoding

Front End Scenario 3

Hybrid Latent Encoding

Back End Scenario

Back End Scenario

Back End Metrics

Score Based

(Many 1-to-1 matches)

Back End Metrics

Rank Based

(Many 1-to-1 matches)

E.g. Is the latent's mate returned in the list of "high-probability" candidates?

What rank-based statistics apply?

Percentage of time mate shows up within top-N candidates?

Rank based statistics require a gallery of significant size

Score Normalization

The Issue

- Match score is likely to be dependent on characteristics such as the number of true minutiae in the latent, and the number of true minutiae varies greatly between latents
- Latent match scores may need to be normalized so that they can be compared using score-based metrics

Score Normalization

SDK Subroutine:

- IN: Vector of Scores
 (E.g. All scores for latent against gallery of tenprints)
- OUT: Normalized Vector of Scores

Gallery Selection

Possibilities:

- 1. Select a general gallery and search with all latent probes
- 2. Select a gallery dependent upon the finger position of each latent probe
- 3. Select a gallery with fingerprints that most likely match the latent's mate

Testing Data (Format)

Images:

Tenprint A/N Type-4&14; WSQ

Latent A/N Type-13; UNCOMP

Feature Templates:

Human A/N IAFIS Type-9

Machine A/N IAFIS Type-9 & Proprietary

Pre-Test Demonstration (Leveraging SD27)

Latent Search Grand Challenge?

Host an 'open' forum to determine feasibility of latent SDK testing

Qualify latent SDK test participants

Determine fundamental abilities of a participant to implement the testing protocol

Latent SDK Test Assumptions

- The test protocol must be entirely automated
- Participants must provide both an Encoder and a Matcher
- Performance will be measured in terms of match determination ability
- Similarity scores must be comparable across independent latent searches (normalization may be required)

Latent SDK Test Assumptions (Cont)

- Submitted encoders will be required to compute at a rate less than some maximum amount of time
- Submitted matchers will be required to match at a rate less than some maximum amount of time

Anticipated Performance

Analyses should focus on what level?

- FMR @ 0.5, 0.1, 0.01, ...?
- FNMR @ 0.5, 0.1, 0.01, ...?

These anticipated error rates

- Help determine data set sizes
- Help determine time and resource allocations

Data Questions

How many latents?

300, 1000, other?

How many tenprints?

1000, other?

Criteria for sample selection of tenprints?

Pattern class distribution?

Is there AFIS-matcher bias in the data?

How were mates determined?

Possible Speed Constraints

Given size of proposed tests ...

Machine encode within 5 sec.

 Latent encoding may be slower than tenprint encoding

Match determination within 1-5 sec.

What can you do?

Summary

- Proposed a framework for the automated SDK testing of latent algorithms
 - How good is machine encoding?
 - Benefits of machine encoding?
 - How good is automated match determination?
 - Benefits of automated match determination?
- Front End
 - Human, Machine, & Hybrid Latent Feature Sets
- Back End
 - Latent-to-tenprint and tenprint-to-latent
 - Score and rank based metrics
- SDK Subroutines
 - Encoder, Matcher, & Score Normalization

Conclusion

Things we need:

- Your feedback and suggestions
- Your level of interest to participate in latent SDK tests
- Your ability to share imagery of solved latent cases with NIST